Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport
نویسندگان
چکیده
منابع مشابه
Large permeabilities of hourglass nanopores: from hydrodynamics to single file transport.
In fluid transport across nanopores, there is a fundamental dissipation that arises from the connection between the pore and the macroscopic reservoirs. This entrance effect can hinder the whole transport in certain situations, for short pores and/or highly slipping channels. In this paper, we explore the hydrodynamic permeability of hourglass shape nanopores using molecular dynamics (MD) simul...
متن کاملMolecular transport through large-diameter DNA nanopores
DNA-based nanopores are synthetic biomolecular membrane pores, whose geometry and chemical functionality can be tuned using the tools of DNA nanotechnology, making them promising molecular devices for applications in single-molecule biosensing and synthetic biology. Here we introduce a large DNA membrane channel with an ≈4 nm diameter pore, which has stable electrical properties and spontaneous...
متن کاملPromoting single-file DNA translocations through nanopores using electroosmotic flow
Double-stranded DNA translocates through sufficiently large nanopores either in a linear, single-file fashion or in a folded hairpin conformation when captured somewhere along its length. We show that the folding state of DNA can be controlled by changing the electrolyte concentration, pH and PEG content of the measurement buffer. At 1m LiCl or 0.35m KCl in neutral pH, single-file translocation...
متن کاملComputer simulation of single-file transport.
A stochastic model of single-file transport was developed as the Markov process in continuous time technique. The model was constructed using an EC-1060 computer. Unidirectional fluxes were investigated and populations of channels were correlated with flux fluctuations. The profiles of channel populations were shown to have nonlinear shapes even with the transport of nonelectrolyte (the classic...
متن کاملProbing Single Dna Molecule Transport Using Fabricated Nanopores.
Nanopores can serve as high throughput, single molecule sensing devices that provide insight into the distribution of static and dynamic molecular activities, properties, or interactions. We have studied double stranded DNA electrophoretic transport dynamics through fabricated nanopores in silicon nitride. A fabricated pore enables us to interrogate a broader range of molecules with a wider ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2014
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4897253